LLM-Empowered State Representation for Reinforcement Learning

Boyuan Wang*, Yun Qu*, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, Xiangyang Ji,

More Task-Related State Representations

• Establishing Mappings from States to Task Rewards

Conventional state representations in reinforcement learning often omit critical task-related details, presenting challenge for value networks in establishing accurate mappings from states to task rewards.

• Lipschitz continuity and Training Efficiency

Utilizes LLM to autonomously generate task-related state representation and intrinsic reward python functions which help to enhance the Lipschitz continuity of value network mappings and facilitate efficient training

Origin of Inspiration – A Toy Example

(b) Source, Lip(Q) = 37.47

(c) LLM-generated, Lip(Q) = 3.15

Navigate from the bottom left corner (circle) to the top right corner (triangle)

- **Figure (b):** The original state representations (x1, y1, x2, y2)
- Figure (c): LLM-Generated state representations (x1, y1, x2, y2, d). d denotes the distance between the agent and the target. This modification facilitates easier learning, enhancing Lipschitz continuity and convergence.

- Step 1: Utilize LLM to generate the state representation and intrinsic reward python functions
- Step 2: For each python function candidates, initiate RL training to validate their effectiveness
- Step 3: Provide the training performance and Lipschitz constant between state representations and rewards as feedback, enabling LLM to generate improved functions in the next iteration

Tsinghua University

Feedback For this problem, we have some history experience for you, here are some state revision codes we have tried in the former iterations revise_state() intrinsic_reward()

final policy performance:51.62 Lipschitz constant: CoT Suggestions

(a) Low Performance Analysis: Candidate 2 have the lowest final policy. Lipschitz constant Analysis: The velocity along the x-axis (s[3]) consistently.

Continuous and Discontinuous Scenarios

Continuous Scenarios

Feedback LLM with the Lipschitz constant between each dimension of the LLM-generated state representations and the extrinsic reward. This assessment is crucial for guiding the LLM in identifying and eliminating undesired dimensions within the state representations.

Discontinuous Scenarios

LESR with Discounted Return The Lipschitz constant between the LLM-generated state representations and the discounted return $\sum_t \gamma^t r$ **LESR with Spectral Norm** Use the spectral norm to estimate Lip(V; S)as feedback to LLM. Calculating the spectral norm of the N weight matrices W_1, \ldots, W_N of the value networks, Lip(V; S) is bounded by $\prod_{i=1}^{N} ||W_i||_2$, which is then presented to the LLM as feedback.

Theoretical Analysis

Why smoother net work mappings?

• **Theorem 3.4:** The mapping exhibiting a lower Lipschitz constant is easier to learn and can attain superior convergence.

Why Lipschitz constant is crucial for RL?

- **Theorem B.4:** Reducing Lip(r;S) lowers the upper bound of Lip(V;S)
- **Theorem B.8:** Reducing Lip(V;S) enhance the convergence of V

Benchmark Results and Ablation Study

^		-		-							
Algorithm	TD3	EUREKA	RPI	Ours w/o IR	RPI	Ours w/o SR	RPI	Ours w/o FB	RPI	LESR(Ours)	RPI
Environments											
HalfCheetah	9680.2±1555.8	10400.6±289.2	7%	9969.8±1767.5	3%	9463.2±796.3	-2%	9770.4±1531.3	1%	10614.2±510.8	10%
Hopper	3193.9 ± 507.8	3346.4 ± 423.2	5%	3324.7±191.7	4%	3159.0±466.7	-1%	2851.3 ± 748.1	-11%	3424.8±143.7	7%
Walker2d	3952.1±445.7	3606.2±1010.0	-9%	4148.2 ± 352.9	5%	3977.4±434.3	1%	4204.9 ± 590.3	6%	4433.0±435.3	12%
Ant	3532.6±1265.3	2577.7±1085.6	-27%	5359.0±336.4	52%	3962.2±1332.0	12%	4244.9±1227.9	20%	4343.4±1171.4	23%
Swimmer	84.9±34.0	98.1±31.1	16%	$132.0{\pm}6.0$	55%	160.2 ± 10.2	89%	$85.4{\pm}29.8$	1%	$164.2{\pm}7.6$	93%
Mujoco Relative Improve Mean	-	-	-2%	-	24%	-	21%	-	3%	-	29%
-	-	-	PI	-	PI	-	PI	-	PI	-	PI
AntMaze_Open	0.0 ± 0.0	0.13±0.04	13%	$0.0{\pm}0.0$	0%	0.15±0.06	15%	0.16 ± 0.07	16%	0.17±0.06	17%
AntMaze_Medium	$0.0{\pm}0.0$	$0.01{\pm}0.01$	1%	$0.0{\pm}0.0$	0%	$0.07{\pm}0.05$	7%	$0.0{\pm}0.0$	0%	0.1±0.05	10%
AntMaze_Large	$0.0{\pm}0.0$	$0.0{\pm}0.0$	0%	$0.0{\pm}0.0$	0%	$0.06 {\pm} 0.03$	6%	$0.04{\pm}0.04$	4%	$0.07{\pm}0.03$	7%
FetchPush	$0.07{\pm}0.02$	$0.07{\pm}0.03$	0%	$0.78{\pm}0.16$	71%	$0.06 {\pm} 0.05$	-1%	$0.77 {\pm} 0.14$	70%	0.91±0.08	84%
AdroitHandDoor	0.53 ± 0.44	$0.83{\pm}0.08$	30%	$0.46 {\pm} 0.46$	-7%	$0.63 {\pm} 0.39$	10%	$0.23 {\pm} 0.38$	-30%	0.88±0.12	34%
AdroitHandHammer	$0.28 {\pm} 0.32$	$0.32{\pm}0.45$	4%	$0.22{\pm}0.21$	-6%	$0.29{\pm}0.28$	1%	0.41 ± 0.33	13%	0.53±0.38	25%
Gym-Robotics Improve Mean	-	-	8%	-	8%	-	6%	-	10%	-	30%

Code: https://github.com/thu-rllab/LESR Lab: https://github.com/thu-rllab My Github: https://github.com/BoyuanWang-hub

Facilitate Efficient Training

Algorithm Environments	TD3	LESR(Ours)	RPI
HalfCheetah	7288.3 ± 842.4	7639.4±464.1	5%
Hopper	$921.9{\pm}646.8$	2705.0±623.2	193%
Walker2d	1354.5 ± 734.1	1874.8±718.2	38%
Ant	1665.2 ± 895.5	1915.3±885.5	15%
Swimmer	$49.9 {\pm} 5.2$	150.9±9.5	203%
Mujoco Improve Mean	-	-	91%

Robustness and Stability

Algorithm Environments	TD3	Directly Intrinsic	LESR w/o ER	LESR w/o LC	LESR(Ours)
HalfCheetah	9680.2±1555.8	8919.9±1761.9	10252.8±277.1	10442.9±304.4	10614.2±510.8
Hopper	3193.9±507.8	3358.4±76.6	3408.4±144.0	3362.3±109.4	3424.8±143.7
Walker2d	3952.1±445.7	1924.3±969.3	3865.8±142.5	4356.2±335.3	4433.0±435.3
Ant	3532.6±1265.3	3518.0±147.6	4779.1±30.4	3242.3±459.9	4343.4±1171.4
Swimmer-v3	84.9±34.0	25.2±4.1	51.9±0.1	116.9±6.3	164.2±7.6

Generalization and Adaptability

Testing on two novel scenarios

- Walker Jump
- Walker Split Legs

